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Polydisperse adsorption: Pattern formation kinetics, fractal properties, and transition to order
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We investigate the process of random sequential adsorption of polydisperse particles whose size distribution
exhibits a power-law dependence in the small size limit,P(R);Ra21. We reveal a relation between pattern
formation kinetics and structural properties of arising patterns. We propose a mean-field theory that provides a
fair description for sufficiently smalla. Whena→`, highly ordered structures locally identical to the Apol-
lonian packing are formed. We introduce a quantitative criterion of the regularity of the pattern formation
process. Whena@1, a sharp transition from irregular to regular pattern formation regime is found to occur
near the jamming coverage of standard random sequential adsorption with monodisperse size distribution.
@S1063-651X~98!16709-0#

PACS number~s!: 81.10.Aj, 02.50.2r, 05.40.1j, 61.43.2j
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I. INTRODUCTION

Random sequential adsorption~RSA! is an irreversible
process in which particles are adsorbed sequentially
without overlaps and deposited particles cannot diffuse
desorb from the substrate. The RSA model has been initi
applied to reactions along polymer chains@1#. More recently,
RSA processes have found a variety of other applicati
from adhesion of colloidal particles and proteins onto s
strates@2# to chemisorption@3# and epitaxial growth@4#; for
reviews see@5#.

In this paper, we study a simple generalization of RS
that creates a rich dynamic behavior and results in comp
spatial patterns. Namely, we consider polydisperse rand
sequential adsorption~PRSA! processes. Adsorption of mix
tures has been addressed in a very few studies@6–9#. If a
mixture contains a small number of different sizes, geome
and kinetic characteristics are primarily determined by
smallest size. In many applications, however, the size dis
bution is continuous and spreads over several decades@10#.
Therefore, before the smallest size will finally win, an inte
esting intermediate asymptotics arises. To address this in
mediate regime, we consider PRSA with the power-law d
tribution in the small size limit,P(R);Ra21. We show@11#
that this PRSA gives rise to fractal patterns of dimensionD f
depending on the exponenta. Additionally, we measure the
degree of order of the patterns formed by PRSA, and iden
the local structure of the patterns arising in the limita→`
with Apollonian packing@12#. The significance of Apollo-
nian packing in surface deposition problems was also rec
nized in Ref.@13#.

This paper is organized as follows. In Sec. II, we intr
duce PRSA and present numerical results. In Sec. III,
develop scaling, exact, and mean-field approaches to PR
Exact results are available for the one-dimensional~1D!
PRSA, and they are used to check mean-field and sca
approaches. A relation between kinetics and geometry
PRE 581063-651X/98/58~3!/3530~7!/$15.00
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arising patterns is also discussed. In Sec. IV, we introduc
quantitative criterion of regularity of the pattern formatio
process and analyze the ordering in PRSA processes. Se
V contains a summary.

II. POLYDISPERSE RSA

In applying RSA to real processes, one should take i
account that adsorbed particles are typically polydispe
The relevant example is adsorption of colloidal particle
which have a broad radii distribution. It is usually describ
by the Schulz distribution@14#, which has a power-law de
pendence on the radiusR for smallR and an exponential tai
for largeR:

PSz~R!5F a

^R&G
a Ra21

G~a!
exp F2

a

^R&
RG . ~1!

Here ^R& is the average radius andG(x) the gamma func-
tion. Note that the exponenta should be positive to obey th
normalization requirement,*dR P(R)51.

Only the small-size behavior ofP(R) affects the most
interesting long time characteristics since in this regime o
small particles can be adsorbed. Thus instead of Eq.~1! we
shall use a power-law size distribution with an upper cut
~taken as the unit of length!:

P~R!5H a Ra21, R<1;

0, R.1.
~2!

The patterns formed by PRSA are drastically differe
from traditional RSA patterns, since the coverage is co
plete for PRSA. The pore space of the patterns is a nontri
fractal set. This is physically evident, and in one dimensio
proves possible to determine the fractal dimensionD f(a)
analytically. In higher dimensions, we have to resort to n
merical treatment.
3530 © 1998 The American Physical Society
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Monte Carlo simulations of the PRSA model have be
performed by implementing the following algorithm. A ce
ter of the new disk is chosen at random with a uniform pro
ability density. The radius of the disk is generated accord
to the size distribution of Eq.~2!. If this disk does not over-
lap any other disks already in place, it is deposited. Oth
wise, the attempt is discarded. The maximal coverage s
ied in simulations was;0.9 and about 100 runs wer
performed for eacha. Some of the generated patterns a
shown in Fig. 1. Clearly, the character of patterns chan
when the exponenta increases from 0 tò . For smalla, the
patterns look like a random set of little disks distributed u
formly over the plane, with larger disks randomly scatter
in the ‘‘sea’’ of smaller ones. For largea, one recognizes a
structure initially formed by large disks and then reproduc
by smaller disks in the holes between the large ones. Th
properties of patterns follow from the small size behavior
radii distribution functionP(R). Indeed whena→0, the
smallest particles primarily participate in the adsorption, a
hence apparently random patterns emerge. Whena→`, the
particles of the largest size are deposited until the sys
reaches the jamming limit of monodisperse RSA. Then
next particle to arrive will be the one that fits the bigge
hole. This continues, so in this second stage the proce
deterministic and apparently ordered patterns emerge.

On the length scales much smaller than the upper cu

FIG. 1. Typical PRSA patterns fora50.1, 1, 5, 10, and 50 and
Apollonian packing.
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patterns are self-similar~Fig. 2!. This suggests the fracta
nature of the arising patterns. We have measured the fra
dimensionD f of the pore space of the patterns using t
standard approach~see, e.g.,@15,16#! based on the analysi
of the radii distribution function for the adsorbed particle
Namely, denote byn(R)dR the number density of adsorbe
disks with radii from the interval (R,R1dR). Let e be an
arbitrary lower cutoff radius. ThenN(e)5*e

`dR n(R) gives
the number density of disks with radii greater thane. The
power-law behavior ofN(e) at thee→0 limit,

N~e!;e2D f , ~3!

is a signature that the pore space is a set of fractal dimen
D f . Numerically, we indeed observed this power-law beh
ior. We also found thatD f monotonously decreases whena
increases~see Fig. 3!.

III. THEORETICAL APPROACHES TO PATTERN
FORMATION

In the present section we employ scaling, mean-field,
exact approaches to the process of pattern formation
PRSA. The first approach is based on the scaling hypoth
and gives relations between structural and kinetic charac
istics of the system.

A. Scaling framework

Let F(t) be the fraction of uncovered area andC(R,t)
the probability that a disk of radiusR can be placed onto a
substrate@11#. Clearly,

FIG. 2. Self-similarity of the PRSA patterns.

FIG. 3. The fractal dimensionD f vs a in two dimensions.D f of
the scaling theory is obtained from Eq.~9! with the ‘‘experimental’’
value of the kinetic exponentz.
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C~0,t !5F~ t !. ~4!

F(t) evolves according to theexactrate equation,

dF

dt
52E

0

`

dR P~R!C~R,t !VdRd, ~5!

where Vd denotes the volume of thed-dimensional unit
sphere,Vd5pd/2/G(11d/2). Assuming a scaling behavio
of C(R,t), we write

C~R,t !5Su~ t ! FS R

S~ t ! D . ~6!

Here S(t);t2n is a typical gap between neighboring a
sorbed particles andF(x) is a scaling function. The scalin
description applies whent→` andR→0 with R/S(t) finite.
The existence of scaling is an assumption, which is s
ported by numerical evidence in 2D and by analytical res
in 1D @9#.

Equations~4! and~6! imply F(t);t2z with z5un. Sub-
stituting then Eq.~6! into Eq. ~5! gives

n5
1

a1d
, z.aVdE

0

`

dx xa1d21F~x!. ~7!

Scaling suggests that self-similar fractal structures sho
arise. Indeed, computing the number density of the abso
particles, we get

n~R!5E
0

`

dt P~R!C~R,t !;Ra211~z21!/n. ~8!

Hence, the power-law dependence of Eq.~3! is recovered
when we identify the fractal dimension with

D f5d2z~d1a!. ~9!

Equation~9! provides a relation between the fractal dime
sion of the arising patterns and the kinetic exponentz. Simi-
lar qualitative behaviors were observed in other pattern
mation models@16#.

We should stress that scaling provides just a framewo
for instance, it gives scaling relations among the expone
but it does not allow us to compute the exponents. So
should use other approaches to get a complete exact o
proximate description of PRSA. In one dimension, an ex
description is indeed possible. In higher dimensions, eve
the extreme case ofa5` the fractal dimension of the por
space remains unknown, so analytical description of PRS
hardly possible.

B. 1D PRSA: Exact results

A detailed analysis of 1D PRSA is given in Ref.@9#. Here
we sketch basic results that are necessary to determine
fractal dimension. LetC(x,t) be the concentration of hole
of lengthx at timet. All holes have the same ‘‘shape’’ in 1D
that significantly simplifies the problem. By definition
C(x,t) is related toC(x,t) via
-
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C~x,t !5E
x

`

dy~y2x!C~y,t !. ~10!

The kinetic equation forC(x,t) reads

]C~x,t !

]t
52C~x,t !F E

0

x

dz~x2z!P~z!G
12E

x

`

dy C~y,t !E
0

y2x

dz P~z!. ~11!

The first term on the right-hand side of Eq.~11! gives the
loss of holes of lengthx due to deposition of intervals o
lengthz ~with z,x); the second term describes the gain
holes of lengthx from larger holes. SubstitutingP(z)
[P(R) given by Eq.~2! into Eq. ~11! yields

S ]

]t
1

xa11

a11DC~x,t !52E
x

`

dy C~y,t !~y2x!a. ~12!

Multiplying both sides of Eq.~12! by xb and integrating over
x gives the kinetic equation

dMb

dt
5F2

G~a11!G~b11!

G~a1b12!
2

1

a11GMa1b11 ~13!

for the moments of the hole-size distribution

Mb~ t !5E
0

`

dx xbC~x,t !. ~14!

Equation~10! impliesC(x,t)5(]2/]x2) C(x,t). Combining
this with the scaling ansatz of Eq.~6!, we obtain

C~x,t !5Su22~ t ! F9„x/S~ t !…, ~15!

whereF9(j)5d2F/dj2. Equation~15! allows us to express
the momentsMb(t) via the time-independent moments,

Mb~ t !5Su1b21~ t !mb , mb5E
0

`

dj jbF9~j!. ~16!

Choose now the exponentb so that the numerical factor o
the right-hand side of Eq.~13! vanishes, i.e.,

2
G~a11!G~b11!

G~a1b12!
5

1

a11
. ~17!

For suchb5b(a), Eq. ~13! implies thatMb(t) does not
depend ont. Equation~16! therefore givesu512b, and
then other exponents and the fractal dimension are foun

n5
1

11a
, z5

12b

11a
, D f5b. ~18!

A simple analysis shows that~i! Eq. ~17! has only one posi-
tive solutionb5b(a), ~ii ! b,1 for all a.0, and ~iii ! b
decreases whena increases. One can determineb5D f ex-
plicitly in some specific cases, e.g.,D f5(A1723)/2 for the
uniform size distribution (a51).
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C. Mean-field theory of PRSA

In higher dimensions we employ an approximate me
field treatment. We shall use a mean-field description
PRSA close to the one developed in@16# for nucleation-and-
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growth processes. As usual, we shall ignore many-part
spatial correlations and take into account only two-parti
ones. To findC(R,t), consider a circle of radiusR centered
at the origin. Then one can write the following estimate
this function in the mean-field spirit:
C~R,t !5exp H 2E
0

t

dtE
0

R

dr Vdr d21E
0

`

dr P~r!
C~r,t!

F~t! J exp H 2E
0

t

dtE
R

`

dr Vdr d21E
r 2R

`

dr P~r!
C~r,t!

F~t! J .

~19!
is
ti-
sti-

ing

o

ach
The former exponential factor in Eq.~19! estimates the prob
ability that our circle is not covered up to timet by disks
with centers that fall inside this circle. The latter exponen
factor guarantees that the free space inside our circle is
covered by the other disks that were adsorbed outside
circle. We also denote byVd the surface area of the un
sphere ind dimensions,Vd5dVd52pd/2/G(d/2). The ex-
ponential factors in Eq.~19! were derived by noting that

dt dr dr Vdr d21P~r!C~r,t!

gives the probability that a disk of radius belonging to t
interval (r,r1dr) was adsorbed within the time interva
(t,t1dt) in the spherical shell centered at the origin a
confined by radiir andr 1dr. The factorC(r,t) guarantees
that the disk, of radiusr may be placed into the system. Su
an event prevents the adsorption of a disk of radiusR at the
origin. The probability that such an event has not happen

12dt dr dr Vdr d21P~r!C~r,t!,

may be rewritten as

exp $2dt dr dr Vdr d21P~r!C~r,t!%.

The probability that none of these events has happened u
time t is obtained by multiplying all these factors with
<t<t, 0<r<`, and 0<r<`. However, one should tak
into account that the above expression gives a correct
mate only for factors witht50. For subsequent factors wit
t.0, one should useC(r,t)/F(t) instead ofC(r,t) since
the preceding factors guarantee that the disks are place
the uncovered space. UsingF(0)51 and treating separatel
r<R and r>R, one arrives at Eq.~19!. Again we assume
that in the scaling regime we can use Eq.~6! for the function
C(R,t). Taking into account thatC(0,t)5F(t), we get

F~Rtn!5exp H 2E
0

t

dtE
0

`

dr VdP~r!

3@~R1r!d2rd#F~rtn!J . ~20!

Remarkably, the ansatz

F~x!5exp ~2A1x2•••2Adxd! ~21!
l
ot
he

d,

to

ti-

on

reduces the nonlinear integral equation~20! to a system ofd
algebraic equations for coefficientsAj . In particular, in 1D
we getn51/(a11) and a closed equation forA1 :

A15
2a

12naE0

`

dx xa21e2A1x. ~22!

Equation~22! is solved to findA15@2G(a12)#1/a11. Thus
on the mean-field level, the scaling function for 1D PRSA
pure exponential, i.e., it is clearly different from the analy
cal solution. To obtain a quantitative difference, we sub
tuteF5e2A1x with the above value ofA1 into Eq.~7! to find
z5a/a11. Substituting this into Eq.~9!, we obtain the frac-
tal dimensionD f

MF512a for a,1 andD f
MF50 for a>1.

Thus the mean-field theory is clearly wrong fora>1, though
in the limit a→0 it becomes exact@17#. For instance,
D f

exact2D f
MF5(2p/314g22226g)a21O(a3) ~here g

>0.577 215 66 is the Euler constant!.
For 2D PRSA, the ansatz of Eq.~21! yields

A152pa~a12!E
0

`

dx xae2A1x2A2x2
,

A25
p

2
a~a12!E

0

`

dx xa21e2A1x2A2x2
.

Solving these equations numerically, and then insert
F(x)5e2A1x2A2x2

into Eq. ~7!, one findsz andD f .
In the smalla limit, we perform a perturbation analysis t

find @18#

A152pa1a1a252pa217.3557a2,

A25p1a2a1a3a25p21.8339a112.6546a2,

where we have omitted terms of orderO(a3). Using these
expressions forA1 andA2 , we get the kinetic exponent

z5a/21a4a25a/221.5428a21••• ~23!

and for the fractal dimension

D f522a1a5a2522a12.5856a21•••. ~24!

The mean-field predictions forD f(a) andz(a) are shown
in Fig. 3 and Fig. 4. We see that the mean-field appro
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provides a fair description for smalla. For a.1, however,
the spatial correlations become more and more important
the mean-field theory fails.

D. The limit a˜`

When a5`, the PRSA process develops through tw
stages. The initial stage is just RSA of monodisperse p
ticles of radii R5Rmax51. It continues until the jamming
coverage,F`>0.542, is reached. Then the late stage beg
where the next disk to place would be the one that fits
biggest hole. The dynamics in this late stage is thus de
ministic and extremal. This deterministic procedure has b
applied by Apollonius of Perga 200BC to fill the space b
tween three ‘‘kissing’’ disks@12#. In the present case, th
procedure fills uncovered space obtained during the in
RSA stage. As the process develops, new disks will
placed more and more often into the curvilinear triang
confined by three kissing disks. Such curvilinear triangles
filled independently, so locally our packing should be ide
tical to Apollonian packing. The fractal dimension quantifi
local characteristics of the pattern, so we conclude t
D f(`)5DA .

The fractal dimension of Apollonian packing isDA
>1.3057 in two dimensions. Note that the fractal dimens
of the Apollonian parking, arguably the oldest known fract
has not been computed analytically in higher dimensions
the exact value ofD f(`)5DA remains unknown. The only
trivial exception is the one-dimensional case where the h
remaining after the initial stage are filled up completely d
ing the deterministic stage. The number densityn(x)
[C(x,t5`) of adsorbed intervals of lengthx is @19#

n~x!52E
0

`

dt t exp F2xt22E
0

t

dt
12e2t

t G . ~25!

n(x) exhibits a weak integrable singularity in the small si
limit, n(x); ln (1/x), implying that N(e) is regular and
thereforeD f(`)50 @20#. This agrees with previous exac
results, Eqs.~17! and ~18!, which provide the asymptotic
behaviorD f(a). ln 2/ln (a12) whena→`.

IV. ORDERING IN THE RSA

For a quantitative description of the ordering process
we introduce an entropy,SN , characterizing the degree o

FIG. 4. The kinetic exponentz vs a in one and two dimensions
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order of N-particle patterns. LetC denote a particular
N-particle pattern andpN(C) denote the probability of tha
pattern. We can define the Shannon entropy@21,22#,

SN52(
C

pN~C!log2pN~C!. ~26!

As it follows from Eq. ~26!, SN50 for a regular pattern,
since only one configuration~which occurs with the prob-
ability pN51) contributes to the entropy. A closely relate
quantity,dSN /dN.SN112SN , gives the entropy production
rate per particle and characterizes the regularity of the
tern formation process. We also introduce the conditio
entropy,SN11* (C), characterizing patterns built by adding
disk to a givenN-particle patternC:

SN11* ~C!52(
R,rW

p~R,rW uC!log2p~R,rW uC!. ~27!

Here p(R,rW uC) is the conditional probability to add a dis
of radiusR at point rW to the particular patternC(N) of N
disks. The total probability of the (N11)-particle configura-
tion, obtained from the patternC by placing an additional
disk, reads

pN11~R,rW ,C!5p~R,rW uC!pN~C!. ~28!

SN11 can be written as

SN1152 (
R,rW,C

pN11~R,rW ,C!log2pN11~R,rW ,C!. ~29!

Using Eqs. ~26!–~29! and the normalization condition
(R,rWp(R,rW uC)51, we finally arrive at the entropy produc
tion rate:

dSN

dN
.SN112SN5(

C
pN~C!SN11* ~C!. ~30!

Thus the entropy production rate is obtained by averag
the conditional entropy over all possible configurations.

In spite of the apparent simplicity of the definition of th
entropy production rate, its analytical evaluation is a ve
challenging problem even in one dimension. Indeed, it
quires knowledge of the multiparticle probability distributio
function. In the simplest case of the monodisperse RSA,
do know the first two moments ofp(C), the density@5# and
the pair correlation function@23#, but much more detailed
information is needed for a determination of the entropy p
duction rate. Thus we investigated this quantity numerica
for a 2D system by means of Monte Carlo simulations. W
implemented the following algorithm. A disk that is added
the patternC(N) of N disks was treated as a point in th
‘‘configurational’’ space (R,rW)5(R,x,y). We divided the
continuous configuration space into sufficiently small d
crete cells and enumerated these cells. For computation
used cells of linear size 0.01 and a 535 fragment of the
surface@with Rmax51, see Eq.~2!#; thus, the total number o
cells wasM52.53107. Then the conditional probabilities
p„R,rW uC(N)…5pi , that the (N11)th disk comes to thei th



n
i-

er
a

al

i
n
e

lue,

tial
and
ble
in-

ate

nd
is-
rm
nd

re-
en-
tals
par-
ly
g,

-
sure
for
ly
case
e-
rp
it

s in

t is a
the

ven

-
n-

fo

PRE 58 3535POLYDISPERSE ADSORPTION: PATTERN FORMATION . . .
cell, corresponding to (R,rW) in the given configuration,
C(N), of N disks was calculated numerically from

pi5
AiRi

a21

(
j 51

M

AjRj
a21

, ~31!

whereAi50 if the disk corresponding to thei th cell overlaps
with some disk in the patternC(N); otherwise,Ai51. Equa-
tion ~31! follows from the rate of adsorption, Eq.~2!, and the
normalization condition for the probability. The discrete co
ditional probabilities~31! are used to calculate the cond
tional entropySN11* (C) via Eq. ~27!. Finally, the entropy
production rate was obtained by averagingSN11* (C) over C
according to Eq.~30!. The averaging was performed ov
102 Monte Carlo runs, and the accuracy of the method w
controlled through run-to-run deviations.

To compare the entropy production rate for different v
ues ofa, we plotdSN /dN versusF ~see Fig. 5!. The strik-
ing behavior of the entropy production rate is clearly seen
the largea limit: At the beginning of the process of patter
formation ~i.e., whenF'1), the entropy production rat
decreases slowly similar to the smalla case. AroundF

FIG. 5. The entropy production rate vs the uncovered area
different values ofa. A sharp decay atF'0.55 is clearly seen for
largea.
tt
-

s

-

n

'0.55, however, a sharp decay occurs. The threshold va
F'0.55, is close to the jamming density,F`>0.542, of the
RSA of identical disks. The transition demarcates the ini
random stage when disks of maximal radii are deposited
the final deterministic stage when disks of maximal possi
radius are inserted into maximal holes. Given the determ
istic nature of the final stage, the entropy production r
should be equal to zero whena5` andF>F` . This is in
agreement with our numerical findings for largea.

V. SUMMARY

In summary, we investigated the adsorption kinetics a
spatial properties of the arising patterns in RSA of polyd
perse particles whose size distribution has a power-law fo
in the small size limit. We developed a scaling approach a
verified that it indeed applies by comparing with exact
sults in one dimension and numerical results in two dim
sions. We found that arising patterns are self-similar frac
that appear to be completely random when deposited
ticles are predominantly small; in the opposite limit high
ordered structures, locally isomorphic to Apollonian parkin
are formed. The fractal dimensionD f of the pore space is
determined by the power-law exponenta of the particles size
distribution. Whena increases from 0 tò , D f decreases
from 2 to DA>1.305, of the Apollonian packing. We intro
duced the entropy production rate as a quantitative mea
of the regularity of arising patterns. We observed that
sufficiently smalla, the entropy production rate smooth
decays as the coverage increases. In the complimentary
of a@1, the entropy production rate displays a similar b
havior for sufficiently small coverage, followed by a sha
decay to a very low entropy production rate. Physically,
reflects a two-stage nature of the pattern formation proces
the largea limit: The ordinary RSA, which goes until the
jammed state is reached, leads to a random structure tha
starting point for the second stage. During this late stage
deposition process is deterministic and extremal—at a gi
step, the largest hole is filled.
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