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Polydisperse adsorption: Pattern formation kinetics, fractal properties, and transition to order
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We investigate the process of random sequential adsorption of polydisperse particles whose size distribution
exhibits a power-law dependence in the small size lif{tR) ~R* 1. We reveal a relation between pattern
formation kinetics and structural properties of arising patterns. We propose a mean-field theory that provides a
fair description for sufficiently smakk. Whena— oo, highly ordered structures locally identical to the Apol-
lonian packing are formed. We introduce a quantitative criterion of the regularity of the pattern formation
process. Whem>1, a sharp transition from irregular to regular pattern formation regime is found to occur
near the jamming coverage of standard random sequential adsorption with monodisperse size distribution.
[S1063-651%98)16709-0

PACS numbses): 81.10.Aj, 02.50-r, 05.40+j, 61.43 ]

I. INTRODUCTION arising patterns is also discussed. In Sec. IV, we introduce a
quantitative criterion of regularity of the pattern formation

Random sequential adsorptigRSA) is an irreversible process and analyze the ordering in PRSA processes. Section
process in which particles are adsorbed sequentially and contains a summary.
without overlaps and deposited particles cannot diffuse or
desorb from the substrate. The RSA model has been initially Il. POLYDISPERSE RSA
applied to reactions along polymer chajiig. More recently, . .
RpSFjA processes have fo%r?dé variety of other applicgtions In applying RSA to real processes, one should tgke Into
from adhesion of colloidal particles and proteins onto sub_account that adsorbed particles are typically polydisperse.

: . o ) The relevant example is adsorption of colloidal particles,
fg/ail;?/v{sZ]Sg:{ 5c]hemlsorptlor[3] and epitaxial growti4]; for which have a broad radii distribution. It is usually described

In this paper, we study a simple generalization of RSAby the Schulz distributiofil4], which has a power-law de-

; . . X endence on the radil&for smallR and an exponential tail
that creates a rich dynamic behavior and results in comple  largeR:
spatial patterns. Namely, we consider polydisperse random
sequential adsorptio(PRSA processes. Adsorption of mix-
tures has been addressed in a very few stuBed)]. If a Ps(R)=
mixture contains a small number of different sizes, geometric

(R)
and kinetic characteristics are primarily determined by th . .
smallest size. In many applications, however, the size distr‘ie!_|ere<R> is the average radius ard(x) the gamma func-

bution is continuous and spreads over several dedddgs tion. NI(_)te Fhat the gxponené;hougl kielposmve to obey the
Therefore, before the smallest size will finally win, an inter- norma|1 |zat11t|on req”uw_emebn]’h . P d;_ ) & h
esting intermediate asymptotics arises. To address this inter- ONlY the small-size behavior dP(R) affects the most

mediate regime, we consider PRSA with the power-law dis_lnteresting long time characteristics since in this regime only

tribution in the small size limitP(R)~R* L. We show[11] small particles can be adsorbed. Thus instead of(Bqwe

that this PRSA gives rise to fractal patterns of dimengqn shall use a powgr-law size distribution with an upper cutoff
depending on the exponeat Additionally, we measure the (taken as the unit of length
degree of order of the patterns formed by PRSA, and identify

apa—1

mexp

a

. (1)

a—1 .
the local structure of the patterns arising in the limits oo P(R)= a R, Rs1; )
with Apollonian packing[12]. The significance of Apollo- 0, R>1.
nian packing in surface deposition problems was also recog-
nized in Ref[13]. The patterns formed by PRSA are drastically different
This paper is organized as follows. In Sec. Il, we intro-from traditional RSA patterns, since the coverage is com-
duce PRSA and present numerical results. In Sec. Ill, weplete for PRSA. The pore space of the patterns is a nontrivial

develop scaling, exact, and mean-field approaches to PRSAactal set. This is physically evident, and in one dimension it
Exact results are available for the one-dimensiofidD) proves possible to determine the fractal dimendif«)
PRSA, and they are used to check mean-field and scalingnalytically. In higher dimensions, we have to resort to nu-
approaches. A relation between kinetics and geometry aferical treatment.
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PRSA. =01, Dy=194 PRSA. ©= L0, D= 175 FIG. 2. Self-similarity of the PRSA patterns.

patterns are self-similaFig. 2). This suggests the fractal
nature of the arising patterns. We have measured the fractal
dimensionD; of the pore space of the patterns using the
standard approactsee, e.9.[15,16) based on the analysis

of the radii distribution function for the adsorbed patrticles.
Namely, denote by(R)dR the number density of adsorbed
disks with radii from the intervalR,R+dR). Let € be an
arbitrary lower cutoff radius. TheN(e)=[.dR n(R) gives

the number density of disks with radii greater thanThe
power-law behavior oN(e€) at thee—0 limit,

N(e)~e 1, ()

is a signature that the pore space is a set of fractal dimension
D . Numerically, we indeed observed this power-law behav-
ior. We also found thab; monotonously decreases whan
increasegsee Fig. 3.

Ill. THEORETICAL APPROACHES TO PATTERN
FORMATION

¥ o)
PRSA. =50 . Dr=133 Apollonian packing

In the present section we employ scaling, mean-field, and
exact approaches to the process of pattern formation in
PRSA. The first approach is based on the scaling hypothesis
and gives relations between structural and kinetic character-

Monte Carlo simulations of the PRSA model have beernistics of the system.
performed by implementing the following algorithm. A cen-

FIG. 1. Typical PRSA patterns far=0.1, 1, 5, 10, and 50 and
Apollonian packing.

ter pf the new disk is chosen at rando_m with a uniform prqb— A. Scaling framework
ability density. The radius of the disk is generated according )
to the size distribution of E¢2). If this disk does not over- L&t ®(t) be the fraction of uncovered area a(R1)

lap any other disks already in place, it is deposited. Otherth® probability that a disk of radiug can be placed onto a
wise, the attempt is discarded. The maximal coverage stucdubstratd11]. Clearly,
ied in simulations was~0.9 and about 100 runs were
performed for eache. Some of the generated patterns are D;
shown in Fig. 1. Clearly, the character of patterns changes
when the exponernit increases from 0 te. For smalla, the
patterns look like a random set of little disks distributed uni- 1g |
formly over the plane, with larger disks randomly scattered
in the “sea” of smaller ones. For large, one recognizes a
structure initially formed by large disks and then reproduced
by smaller disks in the holes between the large ones. Thes 1.6 |
properties of patterns follow from the small size behavior of
radii distribution functionP(R). Indeed whena—0, the
smallest particles primarily participate in the adsorption, and
hence apparently random patterns emerge. Whene, the 4| Monte Carlo
particles of the largest size are deposited until the systen
reaches the jamming limit of monodisperse RSA. Then the
next particle to arrive will be the one that fits the biggest
hole. This continues, so in this second stage the process is FIG. 3. The fractal dimensioB; vs « in two dimensionsD; of
deterministic and apparently ordered patterns emerge. the scaling theory is obtained from E§) with the “experimental”
On the length scales much smaller than the upper cutoffvalue of the kinetic exponemt

Scaling theory
Mean Field

1 10 o
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WOt =D(1). 4 -
(01)=d(t) (4) P(x.t)= J dy(y—x)C(y.1). (10)

d(t) evolves according to thexactrate equation,
The kinetic equation fo€(x,t) reads

do o
o d
T fo dR P(R)VY(R,t)Vy4RE, (5) aC(x.1) «
P =—C(x,t) j dz(x—2z)P(2)
0
where V4 denotes the volume of thd-dimensional unit
sphere V4= 7%?T'(1+d/2). Assuming a scaling behavior fw fy’x
of ¥(R,t), we write +2 X dy Cy.0) 0 dz A2). (1)
R The first term on the right-hand side of Ed.1) gives the
— Qb .
P(R)=S(1) F(g(g)' ©®) loss of holes of lengthx due to deposition of intervals of

lengthz (with z<x); the second term describes the gain of
Here S(t)~t~” is a typical gap between neighboring ad- holes of lengthx from larger holes. Substitutind(z)
sorbed particles anB(x) is a scaling function. The scaling =P(R) given by Eq.(2) into Eq. (11) yields
description applies whe—o andR— 0 with R/S(t) finite.

a+1
The existence of scaling is an assumption, which is sup- 9 _ fw e
ported by numerical evidence in 2D and by analytical results at * a+1 Cx =2 X dy Cy.bly=0% (12
in 1D [9].
Equations(4) and (6) imply ®(t)~t~* with z= 6v. Sub-  Multiplying both sides of Eq(12) by x? and integrating over
stituting then Eq(6) into Eq. (5) gives x gives the kinetic equation
1 °° dM I'a+1)I'(B+1) 1
_ - +d-1 B_ _
V=T z avdfo dx x* F(x). (7) T F(atf+2) P Myipr1 (13

Scaling suggests that self-similar fractal structures shoulér the moments of the hole-size distribution
arise. Indeed, computing the number density of the absorbed

particles, we get MB(t):f dx xfC(x,t). (149
0

n(R)= fo dt P(R)W(R,t)~R* =70/, (8  Equation(10) impliesC(x,t) = (52/9x2) W (x,t). Combining
this with the scaling ansatz of E(6), we obtain

Hence, the power-law dependence of EB8). is recovered

—Qbf—2 "
when we identify the fractal dimension with CO=STHD) RIS, (19

whereF”(£)=d?F/d£2. Equation(15) allows us to express

Di=d—z(d+a). ©  the momentsv (1) via the time-independent moments,

Equation(9) provides a relation between the fractal dimen- %
sion of the arising patterns and the kinetic exporer$imi- M (1) =S?"A=1(t)mg, m,ff dé EPF7(&). (16)
lar qualitative behaviors were observed in other pattern for- 0

mation modelq16]. . . . Choose now the exponept so that the numerical factor on

We should stress that scaling provides just a frameworkthe right-hand side of Eq13) vanishes, i.e

for instance, it gives scaling relations among the exponents T
but it does not allow us to compute the exponents. So one T(a+ 1T (B+1) 1
should use other approaches to get a complete exact or ap- =
proximate description of PRSA. In one dimension, an exact

description is indeed possible. In higher dimensions, even ir& N
_ , . or suchg=gB(a), Eq. (13) implies thatM 4z(t) does not
the extreme case af=o0 the fractal dimension of the pore epend ort. Equation(16) therefore givesd=1- 8, and

ﬁg?gli r;(;rswiilgiseunknown, so analytical description of PRSA Ignen other exponents and the fractal dimension are found:
1 1-8

B. 1D PRSA: Exact results V="

S lta’ = 1+a’
A detailed analysis of 1D PRSA is given in RE®)]. Here
we sketch basic results that are necessary to determine thesimple analysis shows th&t Eq. (17) has only one posi-
fractal dimension. LeC(x,t) be the concentration of holes tive solution 8= (), (i) B<1 for all >0, and(iii) B
of lengthx at timet. All holes have the same “shape” in 1D decreases whea increases. One can determife=-D¢ ex-
that significantly simplifies the problem. By definition, plicitly in some specific cases, e.@;= (/17— 3)/2 for the
C(x,t) is related tow(x,t) via uniform size distribution ¢=1).

I'(a+B+2) a+l" (17)

Di=p. (18
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C. Mean-field theory of PRSA growth processes. As usual, we shall ignore many-particle
spatial correlations and take into account only two-particle
In higher dimensions we employ an approximate meanones. To find¥ (R,t), consider a circle of radiuR centered
field treatment. We shall use a mean-field description oft the origin. Then one can write the following estimate to
PRSA close to the one developed 6] for nucleation-and- this function in the mean-field spirit:

t ® o Y(p,
W(R,t)zexp[—fdrf dr Qgrd” 1f dp P(p) qif))] p{—fodrfRerdrdlﬁde P(p)qE(LT)T) .
(19

The former exponential factor in E¢L9) estimates the prob- reduces the nonlinear integral equati@d) to a system ofl
ability that our circle is not covered up to tinteby disks  algebraic equations for coefficienfg . In particular, in 1D
with centers that fall inside this circle. The latter exponentialwe getv=1/(a+1) and a closed equation fé; :
factor guarantees that the free space inside our circle is not
covered by the other disks that were adsorbed outside the
circle. We also denote by}, the surface area of the unit A= 1—va
sphere ind dimensions Q) 4=dVy=27Y%T(d/2). The ex-
ponential factors in Eq19) were derived by noting that Equation(22) is solved to findA; =[ 2T (@ +2)]¥*1, Thus
on the mean-field level, the scaling function for 1D PRSA is
drdr dp Qqr® 'P(p)¥(p,7) pure exponential, i.e., it is clearly different from the analyti-
cal solution. To obtain a quantitative difference, we substi-
gives the probability that a disk of radius belonging to thetute F = e ~*1* with the above value oA, into Eq.(7) to find
interval (p,p+dp) was adsorbed within the time interval z=q/a+ 1. Substituting this into Eq9), we obtain the frac-
(r,7+d7) in the spherical shell centered at the origin andta| dimensionD}F=1-a for a<1 andDM =0 for a=1.
confined by radir andr +dr. The factor¥ (p, 7) guarantees Thys the mean-field theory is clearly wrong fee 1, though
that the disk, of radiup may be placed into the system. Such i, the I|m|t a—0 it becomes exact]_?] For instance,
an event prevents the adsorption of a disk of radRust the pexact D = (27/3+492—2—67)a?+0(a® (here 7y
origin. The probability that such an event has not happened_ﬁo 577 215 66 is the Euler constant

For 2D PRSA, the ansatz of E(R1) yields

f dx x¢ lg~AX, (22)

1—drdrdp Qgqr9 P(p)¥(p,7),
* _ _ 2
may be rewritten as Aj=2ma(a+ Z)L dx x@e Ax—Ax"

exp{—drdr dp Qqr8 P(p)¥(p,7)}. - B
A, =—ala+ 2)] dx x@~le~Arx—Ax®,
The probability that none of these events has happened up to 2 0
time t is obtained by multiplying all these factors with 0
<7<t, O0<r=o, and O<sp=<«. However, one should take Solving these equatlons numerically, and then inserting
into account that the above expression gives a correct est=(x)=e ~Ax=A* jntg Eq. (7), one findsz and Dy .
mate only for factors withr=0. For subsequent factors with In the smalla limit, we perform a perturbation analysis to
>0, one should us®¥ (p,7)/®(7) instead of¥ (p,7) since  find [18]
the preceding factors guarantee that the disks are placed on

the uncovered space. Usidg(0)=1 and treating separately Aj=2ma+aa’=2ma—17.355%2,
r<R andr=R, one arrives at Eq(19). Again we assume ) )
that in the scaling regime we can use E).for the function Ay=mtayataza®= m—1.833%+12.654G@",

¥ (R,t). Taking into account tha¥ (0,t)=d(t), we get ) _
where we have omitted terms of ord@(«°). Using these

expressions foA; andA,, we get the kinetic exponent

t o
F(Rt“)=exp{ - fodffo dp Q4P(p)

z=al2+a,0’=al2—1.5428°+ - - . (23
X[(R+ p)d—pd]F(pTV)]_ (200  and for the fractal dimension
Di=2—a+asa’?=2—a+2.5856°+---. (24

Remarkably, the ansatz
The mean-field predictions f@(«) andz(«) are shown
F(x)=exp(—Ax—---—AgxY) (21 in Fig. 3 and Fig. 4. We see that the mean-field approach



3534 BRILLIANTOV, ANDRIENKO, KRAPIVSKY, AND KURTHS PRE 58

Z 1 order of N-particle patterns. LetC denote a particular
N-particle pattern angy(C) denote the probability of that

pattern. We can define the Shannon entr{#i,22,
D Mean Field
1D Exact

SN=—§ Pn(C)logzpn(C). (26)
01 L

As it follows from Eq. (26), Sy=0 for a regular pattern,
since only one configuratiofwhich occurs with the prob-
ability py=1) contributes to the entropy. A closely related
quantity,d Sy /dN=Sy, 1 — Sy, gives the entropy production
rate per particle and characterizes the regularity of the pat-
tern formation process. We also introduce the conditional
entropy, Sy, 1(C), characterizing patterns built by adding a
FIG. 4. The kinetic exponemtvs « in one and two dimensions. disk to a givenN-particle patterrC:

2D Monte Carlo

0.01 0.1 1 10 (04

provides a fair description for sma#f. For =1, however, B - -
the spatial correlations become more and more important and S+1(C)=~ ;r. p(R,r [C)logzp(R,r [C).  (27)
the mean-field theory fails. ’

Here p(R,r |C) is the conditional probability to add a disk

of radiusR at pointF to the particular patter©(N) of N
When a=«, the PRSA process develops through twodisks. The total probability of theN+ 1)-particle configura-

stages. The initial stage is just RSA of monodisperse partion, obtained from the patter@ by placing an additional

ticles of radiiR=R,5,,=1. It continues until the jamming disk, reads

coverage®d,=0.542, is reached. Then the late stage begins,

where the next disk to place would be the one that fits the Pn+1(RF,C)=p(R,r |C)pn(C). (28

biggest hole. The dynamics in this late stage is thus deter-

ministic and extremal. This deterministic procedure has beefy+1 can be written as

applied by Apollonius of Perga 200BC to fill the space be-

tween three “kissing” diskg12]. In the present case, the

procedure fills uncovered space obtained during the initial

RSA stage. As the process develops, new disks will be

placed more and more often into the curvilinear trianglesUsing Egs. (26)—(29) and the normalization condition,

confined by three kissing disks. Such curvilinear triangles arQR’;p(R,F |C)=1, we finally arrive at the entropy produc-

filled independently, so locally our packing should be iden-tion rate:

tical to Apollonian packing. The fractal dimension quantifies

local characteristics of the pattern, so we conclude that asy .

D(¢)=D,. N =S S=2 POSa(©). (30
The fractal dimension of Apollonian packing B,

=1.3057 in two dimensions. Note that the fractal dimensionThys the entropy production rate is obtained by averaging
of the Apollonian parking, arguably the oldest known fractal,the conditional entropy over all possible configurations.
has not been computed analytically in higher dimensions, so |n spite of the apparent simplicity of the definition of the
the exact value oD¢() =D, remains unknown. The only entropy production rate, its analytical evaluation is a very
trivial exception is the one-dimensional case where the hOIe@ha"enging prob|em even in one dimension. Indeed, it re-
remaining after the initial stage are filled up completely dur-qujres knowledge of the multiparticle probability distribution
ing the deterministic stage. The number densit{x)  function. In the simplest case of the monodisperse RSA, we
=C(x,t==) of adsorbed intervals of lengthis [19] do know the first two moments @f(C), the density5] and
¢ 1—e 7 the pair correlation functiofi23], but much more detailed
—xt—ZJ dr } (25)  information is needed for a determination of the entropy pro-
0 T duction rate. Thus we investigated this quantity numerically
. ] ) o . for a 2D system by means of Monte Carlo simulations. We
n(x) exhibits a weak integrable singularity in the small sizejmplemented the following algorithm. A disk that is added to
't'rr]“'t'f”(xg;( 'g(léx)['zé?%[¥]'_”9 that N(e)'thls regular and t the patternC(N) of N disks was treated as a point in the
eretoreb(=) = - [NIS agrees with previous exac “configurational” space R,F)=(R,x,y). We divided the
[)eshults_, EDqs.(lz)Iargl (18), ;Vh'C: provide the asymptotic continuous configuration space into sufficiently small dis-
ehaviorDy(a)=In 2/In (a+2) whena— . crete cells and enumerated these cells. For computations we
used cells of linear size 0.01 and &5 fragment of the
surfacelwith Ry,.x=1, see Eq(2)]; thus, the total number of
For a quantitative description of the ordering processes¢ells wasM =2.5x10". Then the conditional probabilities,
we introduce an entropysy, characterizing the degree of p(R,r |C(N))=p;, that the N+ 1)th disk comes to théh

D. The limit a—

Svi1=— 2 Pnsa(RT,C)logpysa(R T ,C). (29
R,r,C

n(x)=2f dt texp
0

IV. ORDERING IN THE RSA
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25 ~0.55, however, a sharp decay occurs. The threshold value,
®~0.55, is close to the jamming densith,,=0.542, of the
RSA of identical disks. The transition demarcates the initial
random stage when disks of maximal radii are deposited and
the final deterministic stage when disks of maximal possible
radius are inserted into maximal holes. Given the determin-
istic nature of the final stage, the entropy production rate
should be equal to zero wher=o and®=®_,. This is in
agreement with our numerical findings for large

15

dS/dN

10

V. SUMMARY

In summary, we investigated the adsorption kinetics and
spatial properties of the arising patterns in RSA of polydis-
0 t y y ' perse particles whose size distribution has a power-law form

0.9 0.7 0.5 0.3 0.1 in the small size limit. We developed a scaling approach and
@ verified that it indeed applies by comparing with exact re-

FIG. 5. The entropy production rate vs the uncovered area fopUlts in one dimension and numerical results in two dimen-
different values ofx. A sharp decay ab~0.55 is clearly seen for Sions. We found that arising patterns are self-similar fractals
large a. that appear to be completely random when deposited par-
ticles are predominantly small; in the opposite limit highly
ordered structures, locally isomorphic to Apollonian parking,

cell, corresponding to F{,F) in the given configuration,

C(N), of N disks was calculated numerically from are formed. The fractal dimensidd; of the pore space is
determined by the power-law exponenbf the particles size
AR! distribution. Whena increases from 0 tee, D; decreases
Ppi=w———, (3D from 2 to D ,=1.305, of the Apollonian packing. We intro-
2 ARY L duced the entropy production rate as a quantitative measure
= of the regularity of arising patterns. We observed that for

sufficiently small«, the entropy production rate smoothly

whereA; =0 if the disk corresponding to thi¢h cell overlaps  decays as the coverage increases. In the complimentary case
with some disk in the patter@(N); otherwise Aj=1. Equa-  of o> 1, the entropy production rate displays a similar be-
tion (31) follows from the rate of adsorption, E), and the  havior for sufficiently small coverage, followed by a sharp
normalization condition for the probability. The discrete con-decay to a very low entropy production rate. Physically, it
ditional probabilities(31) are used to calculate the condi- reflects a two-stage nature of the pattern formation process in
tional entropySy, ;(C) via Eq. (27). Finally, the entropy the largea limit: The ordinary RSA, which goes until the
production rate was obtained by averagBy, ,(C) overC  jammed state is reached, leads to a random structure that is a
according to Eq.(30). The averaging was performed over starting point for the second stage. During this late stage the
10? Monte Carlo runs, and the accuracy of the method wasleposition process is deterministic and extremal—at a given
controlled through run-to-run deviations. step, the largest hole is filled.

To compare the entropy production rate for different val-
ues ofa, we plotdSy/dN versus® (see Fig. 5. The strik-
ing behavior of the entropy production rate is clearly seen in
the largea limit: At the beginning of the process of pattern  One of us(P.L.K.) acknowledges NSF Grant No. DMR-
formation (i.e., when®~1), the entropy production rate 9632059 and ARO Grant No. DAAH04-96-1-0114 for finan-
decreases slowly similar to the smail case. Around® cial support.
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